当前位置: 主页 > 数学 >

MBA联考数学冲刺攻略之找出解题思路

2014-10-29 11:29 | 太奇MBA网

管理类硕士官方备考群,考生互动,择校评估,真题讨论 点击加入备考群>>

  很多MBA同学做真题的困难都在于找不到思路。但太奇MBA老师觉得,在掌握基本概念和基本方法之后,多数题都容易找到思路,因为MBA数学主要考基本方法。太奇MBA建议:

  1、把文字材料翻译成数学语言。数学的语言是方程、等式或不等式,把题目中出现的每个变量都用X,Y,Z等未知数代替,再从题目中找出这些未知数之间的关系。多数初等数学题都变成了解线性方程。

  2、联想。对题目中出现的式子要展开联想,搜索记忆库中的导数、积分、数列等等中的公式,看它与哪个公式“模样”比较象,就朝哪个方向去思考。

  3、简化。题目中的式子可能很复杂,我们可以把相同的东西用一个新的变量代替,复杂式子中的简单关系就显现出来了。

  4、搭出思维的框架。就象写文章一样,具体内容还没想全,但头脑中已经有提纲。比如已知等差数列的第二项和第七项,求数列第101项到第200项的和。在具体求之前,头脑中就要先有解题的框架: 设数列首项a1和公差d为未知数—》列出两个方程—》解出a1,d—》由数列通项公式计算前N项和公式—》计算S100和S200—》S200-S100得出答案。这样思路清晰,能提高解题速度。

  此外,还可以学习一些通用解法。通用解法可以解决相同类型的所有题目,无须再费时间思考。比如线代中的线性方程解法、高数中复合函数的二阶导数、隐函数的偏导数、概率中的数学期望和方差等,都是通用解法,答题的速度和准确性依赖于自己的计算能力,虽然计算复杂,但不用花时间思考。我也总结过不少通用解法,比较典型的是:

  已知数列通项公式A(N),求数列的前N项和S(N)。

  这个问题等价于求S(N)的通项公式,而S(N)=S(N-1)+A(N),这就成为递推数列的问题。

  解法是寻找一个数列B(N),

  使S(N)+B(N)=S(N-1)+B(N-1)

  从而S(N)=A(1)+B(1)-B(N)

  猜想B(N)的方法:把A(N)当作函数求积分,对得出的函数形式设待定系数,利用B(N)-B(N-1)=-A(N)求出待定系数。

  例题:求S(N)=2+2*2^2+3*2^3+...+N*2^N

  解:S(N)=S(N-1)+N*2^N

  N*2^N积分得(N*LN2-1)*2^N/(LN2)^2

  因此设B(N)=(PN+Q)*2^N

  则 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N

  (P*N+P+Q)/2*2^N=-N*2^N

  因为上式是恒等式,所以P=-2,Q=2

返回顶部